Translation of DNA into a library of 13,000 synthetic small-molecule macrocycles suitable for in vitro selection.

نویسندگان

  • Brian N Tse
  • Thomas M Snyder
  • Yinghua Shen
  • David R Liu
چکیده

DNA-templated organic synthesis enables the translation, selection, and amplification of DNA sequences encoding synthetic small-molecule libraries. Previously we described the DNA-templated multistep synthesis and model in vitro selection of a pilot library of 65 macrocycles. In this work, we report several key developments that enable the DNA-templated synthesis of much larger (>10,000-membered) small-molecule libraries. We developed and validated a capping-based approach to DNA-templated library synthesis that increases final product yields, simplifies the structure and preparation of reagents, and reduces the number of required manipulations. To expand the size and structural diversity of the macrocycle library, we augmented the number of building blocks in each DNA-templated step from 4 to 12, selected 8 different starting scaffolds which result in 4 macrocycle ring sizes and 2 building-block orientations, and confirmed the ability of the 36 building blocks and 8 scaffolds to generate DNA-templated macrocycle products. We computationally generated and experimentally validated an expanded set of codons sufficient to support 1728 combinations of step 1, step 2, and step 3 building blocks. Finally, we developed new high-resolution LC/MS analysis methods to assess the quality of large DNA-templated small-molecule libraries. Integrating these four developments, we executed the translation of 13,824 DNA templates into their corresponding small-molecule macrocycles. Analysis of the resulting libraries is consistent with excellent (>90%) representation of desired macrocycle products and a stringent test of sequence specificity suggests a high degree of sequence fidelity during translation. The quality and structural diversity of this expanded DNA-templated library provides a rich starting point for the discovery of functional synthetic small-molecule macrocycles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Vitro Selection of a DNA-Templated Small-Molecule Library Reveals a Class of Macrocyclic Kinase Inhibitors

DNA-templated organic synthesis enables the translation of DNA sequences into synthetic small-molecule libraries suitable for in vitro selection. Previously, we described the DNA-templated multistep synthesis of a 13,824-membered small-molecule macrocycle library. Here, we report the discovery of small molecules that modulate the activity of kinase enzymes through the in vitro selection of this...

متن کامل

DNA-templated organic synthesis and selection of a library of macrocycles.

The translation of nucleic acid libraries into corresponding synthetic compounds would enable selection and amplification principles to be applied to man-made molecules. We used multistep DNA-templated organic synthesis to translate libraries of DNA sequences, each containing three "codons," into libraries of sequence-programmed synthetic small-molecule macrocycles. The resulting DNA-macrocycle...

متن کامل

DNA Display II. Genetic Manipulation of Combinatorial Chemistry Libraries for Small-Molecule Evolution

Biological in vitro selection techniques, such as RNA aptamer methods and mRNA display, have proven to be powerful approaches for engineering molecules with novel functions. These techniques are based on iterative amplification of biopolymer libraries, interposed by selection for a desired functional property. Rare, promising compounds are enriched over multiple generations of a constantly repl...

متن کامل

آپتامرها و کاربردهای بیولوژیکی-درمانی آنها

Aptamers are the artificial single-stranded DNA or RNA sequences (more recently, peptides) that fold into secondary and tertiary structures making them bind to certain targets with extremely high specificity. Aptamers were reported for the first time in 1990, a number of their unique features make them a more effective choice than antibodies. Aptamers typically generated through Systematic Ev...

متن کامل

Translating DNA into Synthetic Molecules

At some time almost 4 billion years ago, nature likely was faced with a chemical dilemma. Nucleic acids had emerged as replicable information carriers and primitive catalysts (Joyce 2002), yet their functional potential was constrained by their structural homogeneity and lack of reactive groups. These properties rendered nucleic acids well suited for storing information, but fl awed for mediati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 130 46  شماره 

صفحات  -

تاریخ انتشار 2008